by Means of Single Crystal ²H NMR

Takahiro Iijima, Motohiro Mizuno, Masahiko Suhara, and Kazunaka Endo Department of Chemistry, Faculty of Science, Kanazawa University, Kanazawa 920-1192, Japan Reprint requests to Dr. M. M.; E-mail: mizuno@wriron1.s.kanazawa-u.ac.jp

Z. Naturforsch. **57 a,** 408–412 (2002); received February 26, 2002

Presented at the XVIth International Symposium on Nuclear Quadrupole Interactions, Hiroshima, Japan, September 9-14, 2001.

Study of Structural Phase Transitions in [Mg(H₂O)₆][SiF₆]

The temperature and angular dependences of 2H NMR spectra were measured for single crystal of [Mg(H₂O)₆][SiF₆]. At 283 K, (e^2Qq/h , η) of 2H , averaged by fast 180° flip of water molecules, were obtained as (128 kHz, 0.72), (123 kHz, 0.82) and (106 kHz, 0.80), corresponding to three unequal water molecules in [Mg(H₂O)₆]²⁺. At 338 K, (e^2Qq/h , η) averaged further by the fast reorientation of [Mg(H₂O)₆]²⁺ around the C_3 axis was obtained as (57 kHz, 0.01). In phase II, the jumping rate for the reorientation (k) and the amplitude of the rotational modulation ($\Delta\alpha$) of [Mg(H₂O)₆]²⁺ about the C_3 axis were obtained from the simulation of 2H NMR spectra. The jumping rate at infinite temperature and the activation energy were estimated from the temperature dependence of k as $k_0 = 9 \times 10^{17}$ s⁻¹ and $E_a = 78$ kJmol⁻¹, respectively. The II-III phase transition was found to be related with the freeze of this motion.

Key words: Nuclear Quadrupole Interaction; ²H NMR; Incommensurate Phase; Rotational Modulation; Molecular Dynamics.